Executable Digital Twin

Dr. Leoluca Scurria

Product Manager – Executable Digital Twin Simcenter Experience

Agenda

Scaling the comprehensive digital twin

Executable Digital Twin Solution

Use Cases

Conclusion

Digital Twin at a glance Basic view

There are many definitions of a digital twin

While each vendor has a different definition, based on the maturity of their solution

Most agree on the following:

Digital DIGITAL TWIN Real

A virtual representation of a physical object

Evolves with the lifecycle

What is a Comprehensive Digital Twin and why does it matter?

 Precise virtual representation of a physical product or process

 Used across its lifecycle to simulate, predict and optimize the product and production system

 Made up of multiple representations or models for different aspects of physical behavior

 An evolving object with a lifecycle that needs to be managed

 Closed-loop digital twin provides for bi-directional connectivity between the physical asset and the virtual representation

Provides insights to continuously optimize product and production

Increasing number of simulations throughout product lifecycle increases complexity

How can we unlock the power of the digital twin models across the entire lifecycle?

Siemens Executable Digital Twin

For smarter products, systems, processes

1

Self-contained executable digital behavior of an asset

Leveraged by anyone at any point in lifecycle

- Developed & released by experts
- Real time enabled
- Self-adapting/calibrating
- No additional solvers required
- Deployed from edge to cloud

Executable Digital Twin Leverage engineering insights across the product lifecycle

An executable digital twin (xDT) creates a live connection between virtual and real worlds. It continuously transforms the IoT data through simulation into engineering insights and drives smarter products that can adapt to changes in operating conditions.

Executable Digital Twin Pillars

Accurate

Transforms live data into engineering-grade information. For single components or large, complex systems it can be used at any point in the lifecycle.

Integrated

Connected to live data, either embedded or alongside the physical system, it provides timely information that fuel real-time decisions. Independently of the original simulation model that was used to create it.

Scalable

Leverages Siemens open ecosystem to easily deploy at scale, from edge to cloud. xDT performances remain consistent regardless of the instances deployed.

xDT delivers value throughout the product lifecycle

Agenda

Scaling the comprehensive digital twin

Executable Digital Twin Solution

Use Cases

Conclusions

Siemens Executable Digital Twin solution

Siemens Executable Digital Twin solution

xDT Authoring Authoring process concept

xDT Authoring The xDT element comprises key information that makes it executable and self-contained

Siemens Executable Digital Twin solution

Executable Digital Twin Deployment environments

- Fleet-wide KPI monitoring
- Remote access to asset performances

Service

Siemens Executable Digital Twin solution

Siemens Executable Digital Twin solution

Agenda

Scaling the comprehensive digital twin

Executable Digital Twin Solution

Use cases

Conclusions

Executable DT driving business value cross industry

Siemens executable digital twin Major categories of executable digital twin

xDT Category		Use this application when you want to	Selected use cases	
	Virtual Testing & Commissioning	prepare for how your asset or system would interact with other assets, systems, or people.	 Testing of automation by virtual commissioning Testing new control strategies on gas turbines Operator training 	
	Virtual Sensing	measure something in your asset or system where it isn't feasible to put a sensor.	 Temperature inside electric rotor Pressure distribution inside a gas turbine Free-flow inside a sewage network 	
Ų	Diagnosis & Identification	know why your asset or system is behaving the way it is.	 Unbalance detection of large rotors Leakage detection in a water distribution network Predictive maintenance for machine tools 	
	Performance Prediction	know how your asset or system might behave in future operation.	 Remaining useful lifetime of electric motors Monitoring of coking in steam cracking furnaces Movement of people in emergencies 	
	Performance Optimization	inform actions on how to control the asset or system (with or without a Human-in-the-Loop).	 Model predictive control of a chemical reactor Pump schedule optimization of oil pipelines Operating point setting of catalyst modules 	

Improve machine diagnosis with brownfield compatibility

Challenge

- Metal chips from machining get stuck in the clamping system of the spindle
- Vibration of the tool leads to lower quality
- Current strategy is to clean the clamping at each tool change

Heller Use Case Intelligent automation with Executable Digital Twin

Page 29 Unrestricted | © Siemens 2023 | 30/10/2023 | Leoluca Scurria | Executable Digital Twin | Siemens Digital Industries Software

Improved machine diagnosis with brownfield compatibility

Sensors data

Increased Productivity

Accuracy

Detection time

Improved operational control and performance while reducing costs

Enhanced information

xDT provides a path to a digital future

Reduction on operational costs

Improve operational efficiency of water reservoirs

Challenge

Over/underfilling the reservoirs causes shortages

Uncertainties in the piping layout and impossibility to measure in some locations

Current control strategy relies on operator experience

Solution

Real-time full-fidelity model providing virtual measurements of fluid flows, liquid levels and energy usage. This enables the smart control of the plant and increase sustainability.

Impact of new biobased material for packaging production

Challenge

- Simulate and understand the impact of biobased materials for pouches
- Film cracks stopping the production and causing downtimes
- Cause of failures cannot be controlled in real time

SN – Impact of new bio-based material for packaging production

Page 34 Unrestricted | © Siemens 2023 | 30/10/2023 | Leoluca Scurria | Executable Digital Twin | Siemens Digital Industries Software

SN – Impact of new bio-based material for packaging production

Challenge

Control optimization to prevent film rupture

Collibration

Improved product performance

Improved service offerings

Roller welding optimization for plastic packaging

Challenge

- Understand the thermal behavior of the roller
- Identify and diagnose eventual failures without stopping production
- Update control strategy to maximize productivity

Roller welding optimization for plastic packaging

Roller welding optimization for plastic packaging

Industrial Edge Device (IPC 227E) Collection with Co Г ГГ S7-1500

Real-Time Visualization of each teeth of the welding roller

CPU Consumption: 4.25%

Q

ŀ,

Memory Consumption 218 13MB

Execution Step Time 949.75ms

Uptime: 1m 11s.

10

Agenda

Scaling the comprehensive digital twin

Executable Digital Twin Solution

Use cases

Conclusions

Conclusions Key takeaways

Smart Production is going to introduce new challenges and companies need tools and technology to frontload them Digital twin in combination with smart control algorithms are the key enablers for reaching target KPIs within reasonable time and cost

AMERICA	If customers want to still be successful in the future, they need to operate here to design better products and prepare for Industry 5.0							
	With Industry 4.0 fe here to reduce time	w companies have st and cost	arted operating					
	Most companies of historical humits	er talle flører slove ko						
	Validate	Troubleshoot	Predict	Automate	Editor			
1	HEA	inet,	PROJCTIVE.	Endine portation	OVERINA HITSEALER			

Siemens portfolio covers the full solution from the realization of the digital twin to cloud based data storage system, data analytics and control development and integration

Executable Digital Twin is the right solution to make **smart usage** of all the **data and information** collected from the field during plant operation to **optimize the production process**

Thank you!

Leoluca Scurria, PhD

Product Manager, Executable Digital Twin Via Vipiteno 4 20148 Milano Italy

Phone +39 342 18 36 785

E-mail leoluca.scurria@siemens.com

